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Chapter 8
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Abstract: Three-dimensional (3D) magnetotelluric (MT) forward and inverse solutions are
reviewed and applied in a resolution study for sub-salt imaging of an important target in marine
magnetotellurics for oil prospecting. In the forward problem, finite-difference methods are used
to efficiently compute predicted data and cost functional gradients. A fast preconditioner is
introduced at low induction numbers to reduce the time required to solve the forward problem.
We demonstrate a reduction of up to two orders of magnitude in the number of Krylov sub-
space iterations and an order of magnitude reduction in time needed to solve a series of test
problems. For the inverse problem, we employ a nonlinear conjugate gradient solution developed
on massively parallel computing platforms. Solution stabilization is achieved with Tikhonov
regularization. To further improve the image resolution of sub-salt structures, we have also
incorporated two additional constraints within the inversion process. The first constraint allows
for the preservation of known structural boundaries within the inverted depth sections. This type
of constraint is justified for the sub-salt imaging problem because the top of salt is constrained
by seismic data. The other constraint employed places variable lower bounds on the electrical
conductivity above and below the top of salt. Cross-sections of the inversion results over the
center of the salt structures indicate that the 3D analysis provides somewhat more accurate
images compared to faster 2D analysis, but is computationally much more demanding. On the
flanks of the structures, however, 3D analysis is necessary as 2D inversion shows image artifacts
arising from the 3D nature of the data. We conclude, however, that 3D inversion may not be
cost effective for the sub-salt imaging problem. Very fine data sampling along multiple profiles
employed in the 3D analysis yielded only a marginal improvement in image resolution compared
to 2D analysis along carefully selected data profiles. The study also indicates that in order to
provide resolution that is required to accurately define the base of the salt, additional constraints
beyond that employed here, need to be incorporated into the 3D inversion process.

1. INTRODUCTION

With the advent of multiple channel 24 bit data acquisition systems, the ability to
acquire large amounts,of high-quality magnetotelluric (MT) data is rapidly becoming
a reality. This is evidenced by our ability to acquire MT data sets in remote and harsh
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marine environments (cf. Constable et al., 1998; Hoversten et al., 2000). Accompanying
this advance in data acquisition technology has been a significant improvement in the
data processing capabilities, including the introduction of a remote reference to reduce
bias associated with noise in the magnetic field measurements (Gamble et al., 1979) and
robust transfer function response estimation (cf. Egbert and Booker, 1986). Because of
these improvements in instrument accuracy and data processing, MT surveys are starting
to be designed where data are acquired along several parallel profiles rather than just
along one or two which has been traditionally the case. The use of multiple lines allows
for three-dimensional (3D) geological structures to be better delineated.

Paralleling the improvement in data acquisition systems has been the increasing _
speed and memory capability of computers. This has allowed for the development of
algorithms that more accurately take into account some of the multi-dimensionality of
the MT interpretation problem. For example 2D MT inversion schemes that 10 years
ago required a Cray computer for reasonable computation times (cf. DeGroot-Hedlin
and Constable, 1990) can now run in a period of a few minutes to an hour or two on
standard desktop workstations and PCs. In addition computationally efficient algorithms
have been developed that either make subtle approximations to the 2D problem (cf.
Smith and Booker, 1991; Siripunvaraporn and Egbert, 2000) or that use efficient iterative
gradient algorithms (cf. Rodi and Mackie, 2001) to produce 2D images of the geological
structure.

In 3D environments, 2D interpretation of the data is standard practice because of
quick processing times and because of the scarcity and time consuming nature of 3D
MT modeling and inversion schemes. Thus one may never fully know the advantages,
if any, 3D MT inversion can offer without actually applying it to the data. Moreover in
some 3D environments it is conceivable that the use of 2D interpretation schemes may
result in artifacts appearing in the images that could lead to misinterpretation. Therefore
there exists a need for efficient 3D forward modeling and inversion algorithms to be
developed. In this paper we outline recent progress that has been made in developing
one such set of algorithms (Newman and Alumbaugh, 2000), and employ them on a
simulated petroleum exploration problem.

The exploration problem we have selected to demonstrate these algorithms is
a resolution study for imaging the base of 3D salt structures. Such structures are
encountered in petroleum exploration in the Gulf of Mexico, where seismic imaging
beneath these high-velocity formations is a formidable task. The scattering of seismic
energy produced by these formations limits the ability of migration methods to delineate
the base of salt as well as deeper oil bearing horizons. Additional motivation for
pursuing such a study is to compare the 3D results with the 2D MT work already done
on the problem (cf. Hoversten et al., 1998, 2000). If 3D data analysis shows significant
improvements in our ability to image sub-salt structures, it could justify the extra time
and cost needed to acquire and interpret the 3D MT data sets.

Before presenting the resolution study, details on the 3D forward and inversion
algorithms employed in the investigation are discussed. This is necessary in order to
dacument the changes we made to the algorithms in the course of this study. The first
change we will discuss is the development of a low-frequency preconditioner needed to
greatly reduce the computation time required in the forward problem at long periods.
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MT simulations at periods greater than 1000 s are used in the resolution study due to
the highly conductive seawater and sea sediments, and the new preconditioner has a
significant impact in reducing computational run times at the longer periods. The other
changes correspond to the incorporation of additional constraints, beyond the standard
Tikhonov regularization employed for constructing smooth solutions to the inverse
problem. Specific constraints to be discussed include preservation of known structural
- boundaries, such as the top of salt, within the inverted depth sections, and incorporation
of variable lower bounding constraints on the electrical conductivity above and below
the top of salt. It will be shown that incorporation of these constraints into the MT
- inverse problem improves our ability to image the base of salt.

2. THE 3D MT FORWARD PROBLEM
2.1. Governing equations and solution

In solving the 3D MT inverse problem it is critical that the forward-modeling solu-
tion simulates the responses arising from realistic 3D geology. Parameterizations of
hundreds of thousands of cells are typically required for these types of numerical
simulations. Hence highly efficient solution techniques are required. Here we em-
ploy finite-difference modeling techniques for the task as outlined in Newman and
Alumbaugh (2000).

Assuming a harmonic time dependence of e'®’, where i = /—1 and w is the angular
frequency, the electric field, E, satisfies the vector equation

VXV XE+iou,cE =0. 8.1)

In this expression the electrical conductivity is denoted by o and i, represents the
magnetic permeability of free space. Note, the equation can be arranged such that the
magnetic permeability is also variable (cf. Alumbaugh et al., 1996), but for simplicity
we have assumed it to be constant. Dirichlet boundary conditions are applied to Equation
(8.1), where the tangential electric-field boundary values are specified on the boundaries
of a large prism that includes the investigation domain (the earth) as well as the air.
These boundary values arise from a plane wave, with a given source-field polarization,
propagating in layered or 2D geologic media assigned at the boundaries of the 3D
problem.

When Equation (8.1) is approximated with finite differences using a Yee (1966)

staggered grid and symmetrically scaled (Newman and Alumbaugh, 1995), a linear
system results:

KE =S. (8.2)

The matrix K is complex-symmetric and sparse with 13 non-zero entries per row and S is
the source vector that depends on the boundary conditions and source-field polarization.
This system can be efficiently solved at moderate to high induction frequencies using the
quasi-minimum residual (qmr) method with Jacobi preconditioning; solution treatment
at low frequencies will be given below. The gmr algorithm belongs to the class of
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Krylov sub-space techniques that are highly efficient in iteratively solving sparse linear
systems. The reader is referred to Newman and Alumbaugh (1995) for the details on
how the solver is implemented. Once the electric fields are determined on the mesh, the
magnetic fields, H, can be determined from Faraday’s law,

H=VxE/—iou,, (8.3)

by numerically approximating the curl of the electric field at the nodal points. One can
then interpolate either the electric or magnetic field nodal values to the detector location.
At this point the magnetotelluric impedance tensor, including apparent resistivity and
phase are readily computed from the electric and magnetic fields.

2.2. Preconditioning

It is well known that difficulties will be encountered when attempts are made to solve
Equation (8.2) as frequencies approach the static limit (cf. Smith, 1996; Newman and
Alumbaugh, 2000). In this section we will show how these difficulties can be overcome,
with preconditioning. The preconditioner that we will introduce parallels the work of '
Druskin et al. (1999), who developed a new spectral Lanczos decomposition method
(SLDM) with Krylov sub-spaces generated from the inverse of the Maxwell operator.
We have successfully implemented it for reducing solution times in induction logging
problems (Newman and Alumbaugh, 2002). Here we derive it for MT applications.

Following Druskin et al. (1999) we assume that the electric field can be decomposed
into curl-free and divergence-free projections via the Helmholtz theorem, where

E=¥+Vgp (8.4)
and

V.- ¥=0 (8.5)
Substituting Equations (8.4) and (8.5) into Equation (8.1), and using the vector identity

VxVxW¥=—Vy, (8.6)
along with the fact that V- ¥ =0and V x V x Vg = 0, we arrive at

VWt iwpu,o(¥+Ve)=0. (8.7)

Splitting the electric field into curl-free and divergence-free projections removes the
null space of the curl—curl operator in the solution process. When Krylov methods are
applied directly to Equation (8.2), this null space is responsible for the poor convergence
properties of the solution process as frequency approaches the static limit.

To develop an approximate finite-difference solution to Equation (8.1) at low
frequencies, we first estimate the relative sizes of the curl—curl and attenuation operators
in Equation (8.1) assuming a finite-difference approximation. Let A be the characteristic
grid size employed in the finite-difference mesh, then the size of the discrete curl—curl
operator is roughly, 1/A?, whereas the size of the attenuation operator is approximated

as w/Lyo. Thus as frequency falls and the grid size is reduced we observe the condition
that

1/A% > 0poOpmax (8.8)
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or
1> Azw“’oamax, (8.9)

where oy is the maximum conductivity in the mesh. When the finite-difference
grid is non-uniform, A should be replaced by A, the maximum cell size used to

approximate Equation (8.1). Assuming Equation (8.9) is satisfied, Equation (8.7) can
then be decoupled such that

—V2¥ =0, (8.10)

Note that the right hand side of Equation (8.9) is a dimensionless induction number (cf.
- Frischknecht, 1987), which has important implications on the validity of Equation (8.10)
and thus the effectiveness of the preconditioner introduced below. More importantly,
notice that Equation (8.9) also indicates the importance of the cell size employed within
the mesh, in addition to the frequency and conductivity. Thus Equation (8.10) may
apply even at moderate to high frequencies (up to 100s of kHz) as long as the grid
size employed for the problem is sufficiently small. This property has allowed for the
beneficial use of the preconditioner in solving induction logging problems (Avdeev et
al., 2002), where very small cell sizes are employed to model a borehole.

The boundary conditions required to solve Equation (8.10) are a mixture of Dirichlet
and Neumann types. Dirichlet conditions are applied to the tangential components of W
on the mesh boundaries (W, has to be specified). For the normal components, Neumann
conditions are applied, where dW,/0n is specified with the constraint that V - ¥ = 0
is discretely satisfied on the mesh boundaries and in turn within the solution domain
because the divergence-free field is required to satisfy the constraint equation

VIV W) =0. (8.11)

Equation (8.11) follows by applying the divergence operator to Equation (8.6). It is well
known that when the scalar function, u = V - W, satisfies Laplace’s equation, V2 =0,
on some domain 2 with homogeneous boundary conditions of u = 0 prescribed along
the boundary T', it is identically zero on that domain. Note when applying the Neumann
boundary condition, n would specify the direction of the outward normal at the
boundary. Thus Equation (8.5) is implicitly enforced with the solution of Equation
(8.10).

The vector field W is not a complete solution to Maxwell’s equations since it does
not satisfy the auxiliary divergence condition on the current density within the earth. To
derive this condition we take the divergence of Equation (8.7) and arrive at

V.oVp=-V.oW. (8.12)

Dirichlet boundary conditions will be applied to the discrete version of Equation (8.12),
where ¢ has to be specified on the mesh boundaries; here we assume that ¢ = 0.
When the air—earth interface is present, however, we employ the Neumann condition,
d¢/0n = 0, where n again specifies the direction of the outward normal at that interface.
This later boundary condition enforces the constraint that current cannot leak from the
earth into the air at induction frequencies; frequencies typically less than 1 MHz.

An approximate solution to Equation (8.1) can be obtained at very small induction
numbers by first solving Equation (8.10) followed by Equation (8.12) using a staggered
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finite-difference grid along with conjugate gradient methods. However the real benefit
of using this approximation is as a preconditioner for Equation (8.2) in order to obtain a
faster solution. This preconditioning involves solving the modified problem

M KE=M'S, (8.13)

where M is chosen such that M~'K approximates the identity matrix (Greenbaum,
1997). This condition will be implicitly satisfied at low induction numbers with the
solutions of Equations (8.10) and (8.12). It is important to note that the preconditioning -
matrix, M, is never actually computed during the preconditioning step, only its effect
upon a vector (a matrix—vector multiplication) is needed. We now describe how this is
done.

During each iteration of the preconditioned qmr algorithm we substitute the residual,
defined by r = KE — S into the right hand side of the discrete version of Equation
(8.10), where ¥, and 0¥, /0n are set to zero on the mesh boundary. Equations (8.10)
and (8.12) are then progressively solved using conjugate gradient techniques along with
an incomplete Cholesky factorization. Furthermore, the solutions to Equations (8.10)
and (8.12) need not be precise, as test examples have indicated that a crude solution to
these equations will still provide a significant impact on reducing the time required for
solving Equation (8.2). In Appendix A, we re-derive this low induction number (LIN)
preconditioner using a Neumann series expansion. From this series, we are able to
provide a rigorous bound on its effectiveness as well as develop higher-order versions.

2.3. Forward model example

To demonstrate the accuracy of the solution, and show the benefits of the preconditioner,
we have employed a 0.1 S/m block within a 0.01 S/m half-space. The block’s
dimensions are 200 m on a side and its depth of burial is 100 m below the surface on
which the fields are to be measured. The size of the grid employed in this simulation
was 28 cells in x and y by 36 cells in z. The minimum cell size at the center of the grid
was 25 m by 25 m by 6.25 m, while at the edges of the grid the largest cell employed
was 200 m by 200 m by 200 m. In Figure 1 the apparent resistivities (o,,) at 4 Hz
and 400 Hz are presented both for the finite-difference solution as well as the integral
equation solution of Xiong (1992). In both cases the responses are determined at 25 m
increments on the surface over the block, with agreement to within one percent.

In Figure 2, we demonstrate the effectiveness of the preconditioner at 4 Hz. A
speed up approaching a factor of 7 is demonstrated compared to a solution employing
simple Jacobi scaling for preconditioning; the machine employed in these comparisons
is an IBM RS 590 workstation. When the LIN preconditioner is compared with the
static-divergence correction procedure of Smith (1996), it is still a factor of 3 faster. At a
frequency of 400 Hz, the preconditioner is still effective, but its benefits are not as great,
now the speed up is only a factor of 2.
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Figure 1. Comparison of finite-difference solution (apparent resistivities at 400 and 4 Hz) with the in-
tegral equation solution of Xiong (1992). The finite-difference solution is shown to the right and the

integral equation solution to the left.

3. THE 3D MT INVERSE PROBLEM

3.1. Regularized least squares

Following Newman and Alumbaugh (2000), we divide the 3D earth into M cells and
assign to each cell an unknown conductivity value. Let m be a vector of length M that
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Figure 2. Convergence rates for different preconditioners, where the squared error is defined as
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describes these values. The cost functional to be minimized in the inversion process,
which combines the data error and model smoothness constraint, will be given by

o= {sfl(ZobS _ Zpre)}H{e—l(Zobs _ Zpre)} + )\,mTWTWm, (8.14)

where H denotes the Hermitian operator. In Equation (8.14), Z°" and ZP* are data
vectors that represent the predicted and observed magnetotelluric impedances at differ-
ent frequencies and locations. These are complex values, and a given entry in the data
vector can represent any component of the impedance tensor,

Zix Zy
Z=\"" "W). 8.15
(Z %) @15

For a description of the tensor properties as well as how they are derived, see Vozoff
(1991). Finally €~! in Equation (8.14) is a diagonal matrix that contains the inverse of
the data error estimates. Thus noisier data are given smaller weight, or less importance,
when forming ¢, than good quality data.

The regularization parameters that stabilize the inverse problem (Tikhonov and
Arsenin, 1977) enforce a model smoothness constraint. Other constraints are available,
some of which will be discussed below, but we employ this particular constraint
here because it produces properties in the solution that we desire. In Equation (8.14)
the regularization parameters are given by the matrix W, which consists of a finite-
difference approximation to the Laplacian (V?) operator, and the tradeoff parameter A.
This later parameter is used to control the amount of smoothness to be incorporated into
the model. In its selection, we note that a large parameter will produce a highly smooth
model, but this model will show poor dependence on the data. A small parameter, on the
other hand, will give a superior data fit, but the resulting model may be too rough and
non-physical. Following Newman and Alumbaugh (2000), Equation (8.14) is minimized
multiple times with different tradeoff parameters that are fixed, and the smoothest model
that provides an acceptable match to the data within observational errors is selected as
the optimal result.

3.2. Nonlinear conjugate gradients

Because of the size of the inverse problem, gradient methods are the only practical
means of solution. The method of steepest descent is the easiest and simplest to
implement of the gradient methods. Unfortunately it usually converges very slowly
in practice. A better approach is the method of nonlinear conjugate gradients, first
proposed by Fletcher and Reeves (1964) for nonlinear optimization, and later im-
proved by Polyak and Ribiere (1969) and recently implemented in 2D and 3D MT
inversion algorithms (cf. Newman and Alumbaugh, 2000; Rodi and Mackie, 2001).
The method is closely related to the linear CG method of Hestenes and Stiefel
(1952) and is in fact identical if the objective functional is quadratic. Listed below
is a flowchart of the Polyak and Ribiere algorithm, that will be used in the anal-
ysis to estimate the conductivity model, m*, which will minimize Equation (8.14).
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NLCG Algorithm
(1) seti = 1, choose initial model m; and compute r(;; = —Vo(mg;)
2) setug) = M(—l)l I'a)
3) find a(i) that minimizes @(mg) + oy8g))
4) set M 41y = M) +Q)Ug) and ree) = —Ve(mgyn)
5) Stop when |r(;41)| is sufficiently small, otherwise go to step (6)
-1 -1 -1
©) set Bu+1) = (X0 My Ty — X0y My T0)/m6) My ey
N set Uy = Mgy ren + Bas i
®) seti =i 1 and go to step (3)

We define M('z)1 and Mgil) as preconditioning matrices for all i. To use the NLCG
method requires that we carefully implement two calculations of the procedure effi-
ciently. These are (1) calculate the gradient of the cost functional, V¢(m), and (2) find
the value of « that minimizes the expression ¢(m + ou) for specified model parameters
m and a given conjugate search direction u. Such procedures along with the specifica-
tion of the preconditioners can be found in Newman and Alumbaugh (2000), including
a massively parallel implementation of the algorithm.

3.3. Solution stabilization via additional constraints

It is commonly known that the MT inverse problem is inherently ill posed. The
instability of the problem arises because the problem is underdetermined and the data
sets that are used are undersampled and noisy. While regularization discussed above
can stabilize the problem by omitting solutions that are not geologically reasonable,
incorporation of a priori knowledge can significantly reduce remaining non-uniqueness.
In fact, the choice of the Laplacian operator to form W can be thought of as a form
of a priori knowledge as the inversion scheme will only search for smoothly varying
models as acceptable solutions. Here, we have allowed three other types of a priori
information about the model to be incorporated into the inversion algorithm. As it will
be demonstrated later in this paper, addition of a priori information can help improve the
resolution of the MT inverse problem.

The first constraint we introduce is to invert against a reference model, m,.;, where
we now minimize

@ = {e71(Z° — ZP*)} e (2 — ZP)} + M(m — myer) W W(m —mep).  (8.16)

Justification for this type of constraint is that in many cases we have prior information
on the geological units that we expect to encounter in a survey. Inverting against a
reference model refines this information with the constraint that an acceptable fit to
the data can be achieved. Another useful constraint is to incorporate ‘tears’ in the
smoothing matrix W (cf. Hoversten et al., 1998). This constraint applies when we know
the location of a boundary surface between two regions of contrasting conductivity. An
example of this situation occurs in marine magnetotellurics when determining the base
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of sub-salt structures. Here the top of salt is known independently from seismic data and
this information can be used to better restrain the base of salt that is to be estimated
in the MT inversion process. A third type of a priori knowledge involves lower-bound
constraints, which allow the user to designate the lowest conductivity value that the
model can attain on a cell by cell basis. This constraint is actually implemented by
inverting for the logarithm of the parameters and also insures that the conductivity is
positive, which is a physical requirement. Following Newman and Alumbaugh (1995),
let us introduce a new parameter n;, that is related to the kth model parameter, m1; using
a natural logarithm transformation as follows:

n = In(my —1by), (8.17)
where 1b;. is a lower bounding constraint such that

my > lby. (8.18)
We also can express my in terms of ny, via the expression

my, = e +1by. (8.19)
Hence

omy/ony = my — lby. (8.20)

To alter the NLCG algorithm to invert for log parameters, n, we first split the gradient
into two components which arise from the data misfit, V4, and the regularization
imposed upon the problem, V,, ¢, where

Vo=V49p+Vno. (8.2D

We then simply scale components of the gradient arising from the first term in Equation
(8.21), V4o, using Equation (8.20) (that is for the kth component of V4¢ we scale it by

the factor m; —1b;) and replace the model parameter vector m by its log counterpart n
in the NLCG algorithm.

4. MARINE MT RESOLUTION STUDY

Next we demonstrate the 3D MT inversion code capabilities with a resolution study
of imaging 3D sub-salt structures, an important target in marine magnetotellurics for
oil exploration. For a detailed description of the marine MT method, including the
instrumentation involved and data interpretation practices, we refer readers to the works
of Constable et al. (1998) and Hoversten et al. (1998, 2000). The aim of the current
study is to determine if the base of salt could be better resolved using 3D data analysis
compared with much faster 2D interpretation of the data along selected profiles. An
additional point of the investigation is to determine where 2D analysis of the data is
inappropriate due to the assumption of 2D geology. The data employed in this study
were generated with the finite-difference solution discussed earlier in the paper at 13
frequencies that span the range from 0.125 to 0.0005. A 175-MHz R10000 Octane SGI
workstation was employed for the forward calculations. Sections of the model are shown
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Figure 3. 3D Mahogany salt model used in seafloor MT inversion study. The top two panels show re-
sistivity cross-sections at ¥ = 2 km and X = 6 km. The bottom panel illustrates the lateral geometry of
the salt bodies at 2.5 km depth; note that the top flank of the salt actually terminates at ¥ = 13 km, off
the top of the X—Y map section. The seawater depth is small at 100 m in the model and the seawater is
assigned a resistivity of 0.333 @ m. r
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Figure 4. MT apparent resistivity and phase pseudo-sections at ¥ = 2 km. Results are illustrated only
for Z,, and Z,, impedances.

in Figure 3, where the sea is quite shallow (100 m) and has been assigned a resistivity
of 0.333 Qm. The 100-Q m salt structure, embedded within the 0.5-Q m sediments,
is a highly complex 3D feature, and is modeled after the Mahogany prospect, in the
Gulf of Mexico. Figures 4 and 5 show selected pseudo-sections of impedance phase
and resistivity. The 3D nature of the site is readily apparent in the apparent resistivity
responses, which show the 3D salt bodies affecting these responses to arbitrary low
frequencies in both the Z,, and Z,, modes. In computing these results the LIN
preconditioner was very effective in accelerating the solution at the longer periods. As
an example, a reduction of more than a factor of 12 was observed in the computational
times at the three lowest frequencies (5 x 107, 7.92 x 10™* and 1.25 x 10~ Hz) when
compared to the solution that employed a simple Jacobi preconditioner.

Because the 3D finite-difference solution is employed within the 3D NLCG scheme,
we used a finer grid in solving the inverse problem. This step insures that the inversion
results will not depend upon the grid used in simulating the data, and thereby provides
another check on the inversion scheme. In preparing the data for inversion, 5% Gaussian
random noise based on the amplitude of the impedance at the seafloor was added to
the off diagonal components of the impedance tensor. The diagonal components, Z,
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Figure 5. MT apparent resistivity and phase pseudo-sections at X = 6 km. Results are illustrated only
for Z,, and Z,, impedances.

and Z,,, were omitted in the analysis at all frequencies. Our justification for omitting
these data values is based on the observation that they are effectively random noise in
the high- to mid-frequency band of the measurement. Common sense then dictates that
they be removed before analyzing field data. While it is possible to include these data
values at lower-frequency bands in the analysis we have chosen not to at this time.
The data set to be inverted is extremely large; 31,200 data points in survey lines that
are spaced every kilometer along the X and Y coordinate directions that range from
£12 km in X and —9 to 14 km in Y. Our justification in using this amount of data
in the analysis is to determine in the ideal case the optimal image resolution one can
expect from 3D inversion. Thus with the knowledge of the best imaging resolution that
can be achieved for the problem, one can then construct data acquisition strategies that
tradeoff model resolution against survey costs. To image the 100-Q m salt structures
within the 0.5-Q m sediments required 129,360 model or conductivity parameters. Even
with the efficiencies of the NLCG algorithm it was necessary to run this inversion
simulation on Sandia National Laboratories massively parallel terraflop computer using
288 processors. The inversion was launched with a starting model consisting of seawater
over 0.5 2 m sediment. Runs using several different tradeoff parameters, demonstrated
that a tradeoff parameter of 10, the smallest employed, yielded a data misfit that
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Figure 6. 3D NLCG solution convergence for the marine MT model example. The dashed curve illus-
trates the reduction in the cost functional (Equation 8.16) with increasing solution iteration. The solid
curve represents the squared error, @4, where the model smoothness constraint term is omitted in the
evaluation of the cost functional. The tradeoff parameter of 10 was specified to obtain these convergence
results. Results show that over the first five iterations significant reduction occurs in the misfit ¢.

approached the target value of 1, the assumed noise level (Figure 6); larger values
yielded larger misfits and the corresponding models were rejected on that basis.

Shown in Figure 7 are cross-sections from the inverse model at 2 km intervals along
the North—South direction, coinciding with the y coordinate direction in the model.
Each depth section is 20 km in length and 10 km in depth. The top slice is located at
¥y =0 km and the bottom one at 12 km. To improve the resolution of these images we
also incorporated a tear in the regularization matrix at the top of salt, and applied lower
bounding constraints on the model parameters, but did not invert against a reference
model in this example. The lower bounds on the conductivity were set at 2 and 0.01 S/m
above and below the top of salt respectively, or equivalently 0.5 and 100 Q m as upper
bounds on the resistivities; because parts of the starting model coincide with the upper
bounding constraint of 0.5 m, we perturbed the bound to 0.55 2 m at those points to
insure that Equation (8.17) stays bounded. Incorporation of the tear and lower-bound
constraints into the inverse problem is justified since seismic data provide independent
estimates on depth to the top of salt.

Notice that the inversion recovers the general shape of the structures, especially at
the top of the salt where we have incorporated the tear. However also notice that (1) the
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Figure 7. Illustrated here is a three-dimensional reconstruction of the Mahogany salt bodies. Seven cross-
sections are illustrated at 2-km intervals along the North—South direction, starting at Y = 0 km at the
top and ending at 12 km at the bottom. Each depth section is 20 km in length and 10 km in depth. The
white lines indicate the true positions of the top and base of salt. Departures from the sediment resistivity
of 0.5 @ m indicate resistive salt features with maximum resistivity estimates of 5 2 m.
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bottom of the salt is imaged to be smoothly varying rather than a sharp interface, and
(2) the highest resistivity that is recovered within the salt is well below the known
value of 100 m. The first effect is to be expected due to the smoothing nature of
the regularization constraints that are imposed, i.e., the problem is not set up to image
the location of sharp interfaces. With regard to not being able to recover the actual
resistivity of the salt, this too is to be expected as the MT response becomes saturated
once the resistivity contrast is large (Hoversten et al., 1998). Fortunately, the resistivity
of saltis not of interest in petroleum exploration, only its base location.

In Figure 8, the predicted impedances for the model are compared with the input data
at 0.0005 Hz in map view. Figure 9 shows a pseudo-section plot of apparent resistivity
and phase at ¥ =9 km. In both cases the agreement between the predicted and input
data are good, with the main difference being the presence of the random noise in the
input data which is not present in the predicted results.

We have also done a series of 2D inversions on the Z,, mode data along the ¥ = 8
km section (east—west line) of the 3D data set to illustrate two points. First of all we
will compare 2D and 3D inversion over this section to see what if any benefits the 3D
inversion offers. Note from Figure 3 and the results in Figure 7 that this profile has
been chosen in a region where the structure is somewhat 2D, that is the variation in
the y direction is small compared to that in the x direction. Therefore this represents a
best-case scenario for 2D inversion to produce reliable results. The second point we wish
to consider are the effects of the various constraints that can be imposed in resolving of
the base of the salt. In this regard we have not only employed a 2D version of the 3D
algorithm described in this paper, but also the Sharp2D algorithm (Smith et al., 1999).
This later algorithm is ideally designed to invert for the location of boundaries between
regions of different conductivity rather than for a smoothly varying model. Together,
these algorithms span a range of possible constraints that can be imposed upon this type
of model, and therefore serve to illustrate the considerable impact that different types of
a priori knowledge can have on recovering certain features within the image (base of
salt in this case).

Five different cases are illustrated in Figure 10. Figure 10a shows the model
produced by 2D nonlinear conjugate gradient inversion with no constraints of any kind,
and Figure 10b shows the result when a tear in the regularization is applied at the top of
the salt. Figure 10c shows the inverse model generated when a tear is employed at the
top of the salt along with the same upper bounds on resistivity above and below the top
of salt as was used in the 3D case. Figure 10d shows the inverse model produced by the
Sharp2D code (Smith et al., 1999) where not only the top of the salt location was fixed
but also the sediment resistivity above the top of salt and the resistivity of the salt were
fixed. The salt resistivity was fixed at 10 Qm, which is not equal to the true 100 2m
but is high enough that the MT response is already saturated. As previously discussed,
increasing the salt resistivity has no meaningful effect on the observed MT responses.
Finally, Figure 10e shows the 3D inverted depth section at 8 km taken from Figure 7
and re-plotted at an identical scale used for the 2D images.

It is clear from the 2D results in Figure 10 that as more information is added to
the inversion in the form of top-of-salt location and bounds on the possible resistivities
of different regions, the inverse model improves. When no constraints of any form are



144 Three-dimensional electromagnetics

Zxy Quadratu

re

s

Observed

oo
N A
o
mm
ONNO
() 5]

w
il
W
|
o
(4]

L N«
8 [
~ o
R b
O O

98
Predicted

N
o
N
1

o
a

Ohms

Observed

-3.11E-05

'
«
@«
o
‘k
o
é]]

Predicted

-4.07E-05

-4.20E-05

12 8 -4 0 4 8 12-12 8 -4 0 4 8 12

X(km) X(km)
Figure 8. Observed and predicted Z,, and Z,, impedance maps at 0.0005 Hz.



G.A. Newman et al. 145

Observed

Predictec

Observed

Predicted

Zxy Apparent resistivity

h)

0.1

0.01

Frequency (Hz)

8

0.1

Frequency (Hz)
o
o
-

o
g

Zyx Phase

% Degrees

>l
a8

©
(=}
-
S
N
3

o
ml_
N
(4]

Frequency (Hz)

=)
8

S

a8

0.1

g 8 28R
o 8 & 3

Frequency (Hz)

0.001

12 8 4 0 4 8 1212 8 4 0 4 8 12
X (km) X (km)

Figure 9. Observed and predicted apparent resistivity and phase soundings, based on Z,, and Z,,
impedance data taken at Y = 9 km.



146 Three-dimensional electromagnetics

Depth (km)

=10 -5

0 5 10

X (k)

Figure 10. First four panels illustrate 2D inverse models from Z,, mode data at ¥ = 8 km. The starting
model was a 0.5-2 m half-space except where noted otherwise. Panel (a) inversion with no constraints
applied. Panel (b) inversion with cell resistivity smoothing eliminated across the top of salt. Panel (c)
inversion with cell resistivity smoothing eliminated across the top of salt and upper bounds of 0.5 and
100 2 m above and below the top of salt respectively. Panel (d) inversion using the Sharp2D algorithm
where the resistivity above the top of salt was fixed to the true value, the top salt boundary was fixed
at its true location, and the salt resistivity was fixed at 10 2 m. Only the base of salt and the resistivity
below the base of salt were sought in the inversion. Black diamonds represent boundary node locations
(filled = fixed, open = variable), black open squares indicate the resistivity below the interface was free
to vary. Panel (e) Y = 8 km section taken from 3D inversion shown in Figure 7.
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used (Figure 10a) the inverse model has high-resistivity zones where the two major salt
units are nearest the surface. In this case the distribution of the smoothed high-resistivity
zones could lead to interpreting both the top and base of the salt as being too shallow in
the section. In addition almost no indication is given of the deeper sills of salt extending
from the main salt bodies on either sides into the center of the section. When the location
of the top of salt is used to eliminate cell smoothing at this location the high-resistivity
zones of the inverse model (Figure 10b) have moved to greater depth, better representing
the true distribution. In particular, the transition in the color contours from 0.73 to 0.83
Qm is now beginning to correctly locate the deeper and thinner salt sills in the center
of the section. When the upper resistivity bounds of 0.5 and 100 2 m, above and below
the top of salt respectively, are added to the smoothing tears (Figure 10c) the image
again improves. Both salt sills are now better defined when compared to Figure 10a
and b.

The final case, Figure 10d, not only increases the constraints placed on the model
(resistivity above salt is fixed, top salt is fixed, and salt resistivity is fixed) but also
changes the parameterization of the model. Rather than cell resistivity being the
parameter of the inversion, the depths of interface—nodes and the resistivity of the layer
(defined at the node positions) below an interface are estimated by the inversion process.
Both the boundary location and resistivity of the layer below the interface are linearly
interpolated between nodes. This parameterization allows sharp jumps in resistivity
across boundaries, which more closely matches the geologic model. In this particular
example, only the location of the base-of-salt nodes and the resistivities below the salt
were determined in the inversion. This represents a realistic case where the top salt
is known from seismic data, the sediments above salt are known from well logs, and
the salt itself is known to have a resistivity substantially greater than the surrounding
sediments. With this amount of a priori information the inversion is able to more
accurately locate the base of salt of both bodies as well as clearly define the thinner
salt sills in the center of the section. However, notice that the base of the salt body on
the left side of the model (the deepest salt) is not well defined by any of the four 2D
examples shown here. Thus this either represents a portion of the model which the data
is not sensitive to, or a location where 3D effects distort the 2D inversion results.

To compare 2D and 3D inversion results, consider the ¥ = 8 km panel of Figure 7
redrawn as Figure 10e, which should be compared directly with Figure 10c. The
same basic inversion algorithm and constraints were used in both cases with the only
difference being the dimensionality that is assumed. Remember from Figure 3 that
although this profile crosses a region where the variation in the y direction is minimal
compared to other areas within the model, there is still significant 3D structure present
and thus there will be 3D effects in the data.

In general the two inversion results appear to yield much of the same information.
However the 3D inverse model (Figure 10e, ¥ = 8 km) appears to do a better job of
indicating the presence and base location of both salt sills in the center of the section
than does the 2D inverse model (Figure 10c). In particular, the thin salt sill extending to
the center from the left side body is well imaged in the 3D model compared to the 2D
model. An argument could also be made that the 3D inverse model better represents the
base of the left side salt body better than any of the 2D inversions shown in Figure 10.
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Figure 11. Two-dimensional inverse model from Z,, and Z,, mode data taken over the edge of the salt
flank at Y = 12.5 km.

However also note that the 2D inversion appears to better represent the right side body
toward the X = 10 km edge of the inversion mesh than the 3D inversion results.
Nevertheless 2D inversion requires careful selection of data profiles to insure that
3D lateral effects are minimized. A poor selection can produce artifacts as Figure 11
demonstrates. Here the profile selected to be inverted is situated at ¥ = 12.5 km, over the
lateral flanks of the salt structures; note that the salt flanks actually extend out to ¥ = 13
km in the lower section of Figure 3. Following the recommendation of Berdichevsky
et al. (1998), both Z,, and Z,, modes were used in the inversion to insure the most
reliable determination of the subsurface geology, especially given the resistive nature
of the 3D salt bodies. While the base of salt is imaged exceedingly well, an artifact
appears below the salt in the lower right side of the image. This artifact represents a 34%
deviation from the sea sediments and could be erroneously interpreted as an important
geological structure. However, one could argue, given the subtle nature of the artifact,
this would not lead to a serious misinterpretation of the geology. Nevertheless, this
result clearly shows the benefit of 3D inversion, since the corresponding 3D image at 12
km in Figure 7 shows no such artifact and does a reasonable job in imaging the salt.
While 3D inversion results and carefully selected 2D inversion profiles are encour-
aging, images of the base of salt are not as sharp as would be desired. This finding is
somewhat discouraging for 3D data analysis given the amount and coverage of the data
employed in the 3D analysis. On the other hand, it suggests that the 3D inversion could
be made with fewer sounding locations, given the good results obtained using 2D data
analysis. Nevertheless, we are currently investigating additional constraints that can be
incorporated into the problem to improve the base salt resolution. The ability to place
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arbitrary upper and lower bounds on different regions of the model as well as fixing
resistivities over portions of the model (comparable to the Sharp2D example) would
clearly be beneficial in cases like these.

5. CONCLUSIONS

In this paper we reviewed techniques to model and invert MT data in three dimensions
with application to modeling and imaging salt structures, an important target in marine
magnetotellurics. To accelerate 3D finite-difference modeling at long periods, we have
also introduced a fast preconditioner that is based upon an approximate solution of
Maxwell’s equations at low induction numbers. Test examples clearly show the benefit
of the preconditioner, where an order of magnitude speed up in solution time has been
demonstrated on a series of test problems. The unique feature of the preconditioner is
its ability to deflate out the effect of the null space of the discrete curl—curl operator in
the Krylov solution process. When this null space is active, it is responsible for the poor
convergence properties of the forward-modeling solution at long periods.

The resolution analysis has shown that 3D inversion, with carefully crafted con-
straints that incorporate a priori information, will offer somewhat improved resolution
compared to corresponding 2D analysis. Whether the marginal improvements in reso-
lution are cost effective is debatable given the time and amount of high-quality data
needed for 3D data inversion. On the other hand, care must be exercised, when inter-
preting 3D data sets with 2D inversion schemes. As has been demonstrated improperly
chosen profiles over the salt flanks, can produce 3D artifacts within the 2D model. While
such artifacts are subtle in nature, they have only been observed over the salt flanks and
not over the center of the resistive salt bodies. Thus it appears that these artifacts are
caused by the assumptions in the 2D modeling and inversion algorithms not being fully
able to incorporate the 3D nature of the data.

In spite of our findings on the marginal improvements demonstrated here with 3D
data analysis, we believe that with increasing computer power and new algorithms 3D
MT modeling and inversion will see increasing use within the induction community.
One can well imagine a situation where 3D effects are so severe that proper analysis of
the data requires full 3D treatment. Thus the solution techniques presented in this paper
are a step in this direction. More importantly, with the incorporation of constraints in
the inversion process, 3D MT modeling and inversion offers the potential to realistically
image complex geological systems of economic and academic interest.
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Appendix A

It is possible to generalize the LIN preconditioner and provide a rigorous bound of its
effectiveness by recasting the solution of Equation (8.2) as

E=(+i0ATD)'ATS. (8.A1)

The matrices I, A and D are matrices that represent the identity, the discrete curl—curl
operator and attenuation terms in Equation (8.A1), where

K=A+ioD. (8.A2)

The matrix D is also diagonal with real elements and A" represents the pseudo-inverse
of A, such that ATA =1 only over those vectors not included in the null space of A; that
is for some vector, v, orthogonal to this null space, we have A*Av = v. Matrix—vector
products involving the pseudo-inverse, A™S, are determined by solving discrete versions
of Equations (8.10) and (8.12) with appropriate boundary conditions, included explicitly
in S. A Neumann series expansion of Equation (8.A1) (cf. Golub and Van Loan, 1989)
can formally be written as

o

E=) {~ioATD}"A"S, (8.A3)
n=0

where the LIN preconditioner would be based on using only the first term in the series.

This series will converge provided the spectral radius, denoted by p, is less than one,
where

p(wATD) < 1. (8.A4)

The spectral radius corresponds to the largest eigenvalue of ||wA*D|| and its evaluation
will provide a measure under the worst possible conditions when the series will converge
and the preconditioner will be effective. Unfortunately evaluation of Equation (8.A4)
requires the solution of an eigenvalue problem, which is computationally impractical.
Nevertheless an estimate of the spectral radius is readily available if we assumed that
the conductivity and grid size is constant in the modeling problem. We can then estimate
the spectral radius using the smallest non-zero eigenvalue of A following Newman and
Alumbaugh (2002) as

p(wATD) ~ wp,o L2, /277, (8.A5)

where L,y is the largest dimension employed in the 3D finite-difference grid. Equation
(8.A5) clearly indicates that as frequency is decreased sufficiently, acceleration in the
convergence rate of the Neumann series, and an increase in the effectiveness of the
preconditioner will be observed. In a final remark, Equation (8.A3) can also be used to
develop a higher-order LIN preconditioner at the expense of evaluating more terms in
the series.
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